设A,B均为4阶方阵. 如果det A=-1,det B=-2,那么

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/27 15:17:13
设A,B均为4阶方阵. 如果det A=-1,det B=-2,那么
设A与B皆为n阶方阵,证明,如果AB=0那么秩A=秩B

见http://zhidao.baidu.com/question/449580128.html

设A,B为n阶方阵,证明:如果A*B=0 则R(A)+R(B)

设I为单位矩阵情形一:A=0时,R(A)=0,所以R(A)+R(B)=R(B)=R(IB)

线性代数问题求教:设A,B都是n阶方阵,如果AB=O,则A,B行列式的值是都为0还是只有一个为0?

有定理:若AB=0,A和B都不为零,则│A│=│B│=0证明:因为AX=0有非零解B,所以│A│=0同理YB=0有非零解A,所以│B│=0证毕据此,得到一个结论:若AB=0,则A,B至少有一个为0,否

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

大学线性代数 设A,B均为n阶方阵.1.A,B满足A+B+AB=0.证明E+A,E+B互为逆阵,

1、A+B+AB=0,A+B+AB+E=E,(E+A)(E+B)=E,所以E+A与E+B可逆且互为逆矩阵.所以(E+B)(E+A)=E,E+A+B+BA=E,A+B+BA=0.将A+B+AB=0与A+

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

设A,B,c均为n阶方阵,B可逆,则矩阵方程A+BX=C的解

BX=C-AB^(-1)BX=B^(-1)*(C-A)X=B^(-1)*(C-A)

设A,B均为n阶方阵,且B=B*B,A=E+B.求证A可逆,并求A逆

用B^2表示矩阵B的平方.因为B=B^2,A=E+B,所以A^2=(E+B)^2=E+2B+B^2=E+2B+B=E+3B(1)又因为A=E+B,B=A-E,3B=3A-3E,所以由(1)式:A^2=

设A,B均为N阶方阵且|A|=2,|B|=-3.求A^(-1)B*-A*B^(-1)

因为有A^-1=A*/detA,原式等于A*B*(2--3)=5A*B*.估计是求行列式,det=5^n*2*(-3)=-6*5^n

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A,B均为n阶方阵,且B不等于零,若AB=0,则|A|=?

AB=0,则B的列向量都是Ax=0的解因为B≠0,所以Ax=0有非零解,所以|A|=0.同理.AB=AC即A(B-C)=0若能推出B=C则Ax=0只有零解,所以|A|≠0|A|≠0r(A)=nAx=0

设A,B,C均为n阶方阵,且ABC=I,则( )

根据逆矩阵的性质AB=I则有BA=I.已知ABC=I所以A(BC)=I,所以(BC)A=I.故(D)正确再问:貌似我书上的单位矩阵都是E莫非这里的单位矩阵是I?再答:是单位矩阵一般有两种记法,E和I.

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A,B均为三阶方阵,且|A|=4,B=3E,则|-2A^(-1)B^T|=?

层层层层层层层层层层层层层层层层层层层层层层层层层层白布包白布包白布包白斑病本报

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!