三角形abc中ab=ac平面内

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/08 11:30:39
三角形abc中ab=ac平面内
已知在三角形abc中,ab=ac,p是三角形abc内一点,且角apb=角apc

证明:把⊿APB绕点A旋转至⊿ADC的位置(如图).则∠ADC=∠APB=∠APC;DC=PB,AD=AP.∴∠ADP=∠APD.∴∠CDP=∠CPD(等式性质)则PC=DC=PB.

同问三角形abc中,AB=AC,O为三角形ABC内的一点,若角ABO=角ACO,说明三角形OBC为等腰三角形

∵AB=AC,∴∠ABC=∠ACB,又∵∠ABO=∠ACO,∴∠ABC-∠ABO=∠ACB-∠ACO,即∠OBC=∠OCB,∴△OBC是等腰三角形.

如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的

选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,

在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的任意两个顶点构成三角形PAB

(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P

在三角形三角形ABC中,AB=AC

(1)角BAD=40,则角EDC=20角BAD=30则角EDC=15度(2)角EDC=1/2角BAD(3)同样存在.证明如下:设角BAD=x,角ABC=y则角DAC=180-2y-x等腰三角形ADE,

怎么证明平面基础性质的推论2 3 三角形ABC中,已知边AB,AC都在平面a上内,求证:边BC也在平面a内

由面到点,AB,AC两条线都在平面上,那么A,B,C三点都在平面上,自然BC线在平面上了.

在三角形ABC中,AB=AC,

证明:因为AB=AC,所以三角形ABC是等腰三角形;由

已知三角形ABC中,角BAC=90度,AB=AC,D为平面内一点,且角BDC=90度,若BD=根号2,CD=2根号2,则

作DQ⊥BC于Q,AO⊥BC于O易求得DQ=4/(根号10)AO=(根号10)/2,CQ=8/根号10,OQ=3/根号10..若A,D位于BC同侧,AD=根号(OQ²+(AO-DQ)

在三角形ABC中,AB>AC,P为三角形内一点,且PB=PC,求AC>AP

已知三角形ABC中,AB=AC,P是三角形内一点,且有角APB>角APC,求证:PB角APC所以角APB>角ADB因为AD=AP所以角ADP=角APD所以角APB-角APD>角ADB-角ADP所以角B

已知在三角形ABC中,AB=AC,AD垂直平面ABC,EC垂直平面ABC,且CE=2AD,求证平面BDE垂直平面BCE

连接ED,延长ED,CA交于点F,连接BF因为AD垂直平面ABC,EC垂直平面ABC所以AD//EC因为CE=2AD所以AD是三角形FCE的中位线所以AF=AC因为AB=AC所以AB=AF=AC所以角

已知在三角形ABC中,AB=AC,AD垂直平面ABC,EC垂直平面ABC,且EC=2AD.求证平面BDE垂直平面BEC

方法一:延长ED交CA的延长线于F.∵AD⊥平面ABC、CE⊥平面ABC,∴AD∥CE,又CE=2AD,∴AC=AF,又AB=AC,∴AB=AC=AF,∴A是△BCF的外心,∴BF⊥BC.∵CE⊥平面

在三角形ABC中,AC=BC>AB,点P为 三角形ABC所在平面内一点,且点P与三角形ABC 的任意两个顶点构成三角形P

6个我们老师讲过了再问:能不能给个过程啊?再答:分别作出三角形的三边的垂直平分线,三线交于同一点,这点就满足条件;A为圆心AB为半径画圆.以C为圆心CA为半径画圆.在AC左侧得一点.同理BC右侧一点.

已知三角形ABC中,AB=AC,P是三角形内一点,且有角APB>角APC,求证:PB

证:在三角形ABC外侧,作角BAD=角CAP,且AD=AP,连接BD,PD因为角BAD=角CAP,AD=AP,AB=AC所以三角形ABD全等三角形ACP所以角ADB=角APC,BD=PC因为角APB>

在圆O的内接三角形ABC中,AB+AC=12

连接AO并延长交圆O于点E,连接BE,由上述结论可知AB•AC=AD•AE因为AB+AC=12,AB=x所以AC=12-x所以(12-x)•x=3×2y,所以y与x

在△ABC中,平面向量AB=a,平面向量AC=b且ab<0则△ABC是什么三角形

[箭头、点乘号省略]ab=|a||b|(cos)=|AB||AC|(cos)=|AB||AC|cos/_BAC