作业帮 > 数学 > 作业

一道抛物线问题在平面直角坐标系xOy中,直线l与抛物线y^2=4x相交于不同的两点AB.问:如果OA与*OB=-4,证明

来源:学生作业帮 编辑:灵鹊做题网作业帮 分类:数学作业 时间:2024/06/17 14:22:16
一道抛物线问题
在平面直角坐标系xOy中,直线l与抛物线y^2=4x相交于不同的两点AB.问:如果OA与*OB=-4,证明:直线l必过一定点,并求出该定点.
一道抛物线问题在平面直角坐标系xOy中,直线l与抛物线y^2=4x相交于不同的两点AB.问:如果OA与*OB=-4,证明
设A(x1,y1),B(x2,y2)
直线L的斜率不为0
则设直线为x=my+t
(注意,此种设法可以避免分类讨论,即讨论直线的斜率是否存在.)
与抛物线方程y^2=4x联立,
即将直线代入抛物线方程.
则 y²=4(my+t)
∴ y²-4my-4t=0
利用韦达定理
则 y1+y2=4m, y1*y2=-4t
∴ x1*x2=(4x1*4x2)/16=(y1²*y2²)/16=t²
∵ 向量OA乘向量OB=-4
∴ x1x2+y1y2=-4
∴ t²-4t=-4
∴ t²-4t+4=0
∴ (t-2)²=0
∴ t=2
即直线方程为x=my+2
∴ 直线L恒过一个定点,这个定点的坐标是(2,0)

解法二:参数方程
设A(t1²,2t1),B(t2²,2t2)
则t1²*t2²+4t1t2=-4
∴ (t1t2+2)²=0
∴ t1t2=-2
k(AB)=2(t1-t2)/(t1²-t2²)=2/(t1+t2)
∴ AB方程 y-2t2=[2/(t1+t2)]*(x-t2²)
∴ y=[2/(t1+t2)]x+2t1t2/(t1+t2)
∴ y=[2/(t1+t2)]x-4/(t1+t2)
∴ x=2时,y=0
∴ 直线恒过点(2,0)