竖直面内有一半径为R=1m的圆弧轨道

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/13 16:18:28
竖直面内有一半径为R=1m的圆弧轨道
如图所示,质量m=0.1kg 的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m 的圆周运动,已

(1)在最高点,小球受力如图所示,由牛顿第二定律得:mg+T1=mv21r,解得:T1=1N;(2)由最高点到最低点过程中,对小球由动能定理得:mg•2r=12mv22-12mv12,解得:v2=23

如图,ABCD是处于竖直平面内的光滑轨道,AB是半径为R=15m的1/4圆弧轨道,半径OA处高h处自由下落,沿竖直平面

(1)m*g*14/3=v^2/r*m压力则v^2=11*g*r/3m*g*H=mv^2/2动能守恒(H为实际下降高度,H=h-R/2;R为小圆弧半径r=R/2)则v^2=2*g*H2*g*H=14*

如图所示,ABDO是固定在竖直平面内的光滑轨道,AB是半径为R=15 m的四分之一圆周轨道,半径OA处于水平位置

1)机械能守恒:mgh=1/2mv²解得v=10√(2)=14.142)机械能守恒:mgh=1/2mv²,小球脱离轨道后降地时长:t=√(2R/2/g),其中R=15由几何关系得同

一个半径R=1m的圆弧形光滑轨道固定在竖直平面内

到达B速度方向为切线方向,即与水平面成60度角所以竖直方向速度为Vy=根号3*Vx=4根号3m/s,由于v^2=2gh,所以h为2.4mmg(h+R-R*sin60)=1/2mVc^2-1/2mV0^

如图所示,半圆轨道竖直放置,半径R=0.4m,其底端与水平轨道相接,一个质量为m=0.2kg的滑块放在

A.C相距为0.8mF=2.5N(1)设AC相距为L小滑块恰能运动到最高点B,即在B点时,重力充当向心力mvv/r=mg……………①经过B点之后,小球做平抛运动vt=L…………………②在竖直方向上(1

如图,质量为m=2kg的物体在竖直面内从半径为R=1m的1/4光滑圆弧最高点A由静止开始下滑进入水平轨道MN……

设停在离M距离为L的地方则物体在L的距离上,摩擦力做功要和它最初的机械能相等w=fL=mghmgμ·L=mgR10×0.2×L=10×1L=5m而MN只有2米这说明,物体在走完MN全程后,机械能还没有

AB是位于竖直平面内的半径R=0.5m的光滑绝缘的1/4圆周轨道

解决分为两个阶段:第一阶段:圆轨道动能定理,电场力做功与重力,可以计算出B点的速度,根据圆周运动最低点源向心力,列牛顿第二定律方程可以解决了圆弧形的轨迹B的最低点在B点的压力第二阶段:与水平轨道动能能

如图所示,一根电阻为R=12Ω的电阻丝做成一个半径为r=1m的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂

(1)下落距离为r2时,闭合电路的总电阻:R=R3×2R3R=29R ①导体棒切割磁感线的有效长度L=3r②此时感应电动势E=BLv1③导体棒中电流:I=ER④导体棒受安培力:F=BIL⑤方

半径R=0.4m的光滑半圆环轨道处于竖直

从A---B有动能定理可得-2mgR=1/2m(vB方)—1/2m(vA方)得vB=4m/s由mg+N=(v方/R)m可得N=3N有牛顿第三定律可得小球经过B点时对轨道的压力大小为3N.竖直方向由1/

竖直面内有一半径为R的光滑绝缘圆轨道,放有一个质量为m,带电量为+q

小球受到的合力F=√【(mg)²+(Eq)²】=√2mg所以加速度a=F/m=√2g,且与水平方向成45°夹角可以将F看做重力,√2g看做重力加速度,将C点看做最高点(1)小球在C

【期末求解】如图所示,质量m=0.1kg的小球在细绳的拉力作用下在竖直面内做半径为r=0.2m

(1)小球在最高点时绳的拉力T1T1+mg=mv1^2/rT1=1N方向竖直向下(2)小球在最低点时绳的拉力T2有机械能守恒得mg2r+1/2mv1^2=1/2mv2^2T2-mg=mv2^2/rT2

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(

.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(半径比r小很多)

一个是高速Vo通过,应该不用解释,另一个是低速不脱离轨道,因为当速度大于这个低速Vo但不高于高速Vo时,就会因为小球超出圆心等高的点,即会在1/4圆周到1/2圆周(轨道顶点)中间某位置脱离轨道抛落,如

半径R = 0.4m的竖直半圆轨道与粗糙的水平面相切于A点,质量为m = 1kg的小物体(可

(1)、根据恰巧落到C点列方程,竖直方向:0.5*g*t^2=2R水平方向:V*t=Xac解得Vb=5m/s此时F1=F向心力-G=(m*v^2)/r-mg=52.5N(2)、因为半圆轨道光滑,所以从

如图所示,一光滑斜面连接着一光滑竖直圆轨道轨道半径为R,现有一质量为m的小球从h=3R的高度由静止滑下,试通过计算说明质

能滑过最高点,根据能量守恒,mg×3R=mg×2R+0.5mv∧2,因此V=根号2gR>根号gR所以能够通过最高点,压力为mg

半径R =20c m 的竖直放置的圆轨道与水平直轨道连接.质量为m =50g 的球A

题目没说清楚N点的具体位置,我判断N点是在圆轨道的最低点.若你同意我的判断,即小球从N点开始经半圆到达最高点M.已知m=50克=0.05千克,在N点速度是V1=4m/s,R=20厘米=0.2米,在M点

如图所示,轨道ABCD的AB段为一半径R=0.2m的光滑1/4圆形轨道,BC段为高为h=5m的竖直轨道,CD段为水平轨.

1)水平距离s=vt=v√h/g=1.41m2)N=mg+mv^2/R=3N3)X=vt,H=gt^2H=Xtan45所以,H=gX^2/v^2解方程得到H=X=v^2/g字数限制,不能详细解释.

如图所示,固定在竖直平面内的钢丝ABC,其水平部分AB长L=4R,BC部分是半径为R的半圆,直径BC在竖直方向.质量为m

(1)小球由C点飞出后,做平抛运动;在水平方向:R=vct竖直方向2R=12gt2;联立解得:vC=12gR;(2)对BC过程由机械能守恒定律可知:mg2h=12mvB2-12mvC2解得:vB=12

如图所示,斜面与半径为R=2.5m的竖直半圆组成轨道,斜面A点到水平面的距离是10m.

所谓恰好经过B,即在B处只有重力作为向心力.mg=mv^2/R,即B点速度v=sqrt(gR)=5m/s从B点做平抛运动.从B点下落时间:2R=0.5gt^2,t=1s.则B到C的水平距离:vt=5*