同一个可逆矩阵P同时对角化A和B,则AB=BA

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 00:25:27
同一个可逆矩阵P同时对角化A和B,则AB=BA
下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

线性代数书问题(1)已知矩阵A=(1,-1,2)( 0,2,0)(2,2,-2)可相似对角化,试求可逆矩阵P与对角矩阵

|A-λE|=1-λ-1202-λ022-2-λ=(2-λ)[(1-λ)(-2-λ)-4]=(2-λ)(λ^2+λ-6)=(2-λ)(λ-2)(λ+3)所以A的特征值为2,2,-3.(A-2E)x=0

在利用可逆矩阵P,使A矩阵相似对角化的过程中,求出来对应的特征向量,什么时候要施密特正交化,什么时候不要呢?

一般是针对实对称矩阵的,三阶为例,假如有两个特征值,其中的二重特征值求出两个对应的特征向量,这两个特征向量不正交(就是各个元素乘起来之和不为0),就需要施密特正交化.不同特征值的特征向量必正交,只有相

证明:存在一个矩阵P,使得可交换矩阵A,B同时对角化.

这里是可同时上三角化,至于对角化则不一定.证明也很简单,利用可交换矩阵有共同特征向量,并将这个特征向量扩充为一组基.考虑A,B在这组基下的矩阵.然后利用数学归纳法即可.注:当然事实上这里要求A,B可交

设矩阵A.第一行负4,负10,0第二行1,3,0第三行3,6,1.求可逆矩阵p使p-1Ap可对角化.帮个忙啊.

|A-λE|=-4-λ-10013-λ0361-λ=(1-λ)[(-4-λ)(3-λ)+10]=(1-λ)(λ^2+λ-2)=(1-λ)(λ+2)(λ-1)所以A的特征值为1,1,-2(A-E)X=0

如果矩阵A可逆,则A可对角化.对不对

对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为

相似对角化与相似正交对角化(其他不变)得到的对角矩阵是否是同一个对角矩阵 (是否只与A本身特征值有关)

相似正交对角化的本质就是相似对角化,它只是把相似对角化的变换矩阵中包含的特征向量单位化及正交化了而已.如果A能对角化其对角相似矩阵一定是其特征值在对角线上排布组成的矩阵.不同的只是顺序不同没有本质差别

任何可逆矩阵都可以化成正交矩阵吗?如果矩阵A可以对角化,则使其对角化的可逆矩阵P必可以化成正交矩阵吗

任何可逆矩阵都可以化成正交矩阵吗?--看你所说的“化成”指什么了.如果是指相似变换,结论是一般不可以.因为相似变换不改变特征根,而正交矩阵的特征根的绝对值都是1.但一般矩阵的特征值可以为任意值.如果矩

设A是矩阵.第一行负4,负10,0第二行1,3,0,第三行3,6,1求可逆矩阵p,使p-1AP对角化

首先求出方程|λE-A|=0的解(λ1,λ2,λ3),再将其分别代入方程(λE-A)X=0中,求得它们所对应的基础解系X1,X2,X3,则矩阵(X1,X2,X3)即为所求.再问:我知道这么做。。但是我

有没有不可对角化的可逆矩阵?

1阶可逆矩阵可对角化,高阶不保证.应该说可逆和可对角化没有必然联系.先举个例子给你,把单位阵上三角部分的任何一个零元素改成非零,那么就不能对角化了.要说判断可对角化的话没有非常有效的判据,我可以给你两

矩阵同时对角化的问题矩阵A、B可交换,且都可对角化,证明存在可逆矩阵P使得,P^(-1)AP 和 p^(-1)AP 都是

再问:这里的Bi与Ei同阶是怎么证明的呢?再答:与准对角矩阵diag(λ1E1,λ2E2,...,λrEr)可交换的矩阵必为对应同阶的准对角矩阵。(见北京大学高等代数第四章)再答:

设A等于460负3负50负3负61,A能否对角化,若能对角化,求出其可逆矩阵P,使得P负1AP对角阵

怎么又问一次,上次的回答不行?我负责到底先求出A的特征值:-2,1,1再求特征值对应的特征向量,得P=[-1-20;110;101]P^(-1)AP=diag{-2,1,1}P的逆=[120;-1-1

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

16.13题:下列矩阵中那些矩阵可对角化?并对可对角化的矩阵A,求一个可逆矩阵P,使P^-1A成对角矩阵:

解:|A-λE|=2-λ1-112-λ1001-λ=(1-λ)[(2-λ)^2-1]=(1-λ)^2(3-λ).所以A的特征值为1,1,3(A-E)X=0的基础解系为:(1,-1,0)'.故A不能相似

a为正定矩阵,a-b为半正定矩阵,为什么使a,b合同对角化的可逆矩阵s相等?

1.注意问题的讲法,应该是能够找到一个使得a和b同时合同对角化的可逆矩阵s,而不是说分别使a和b合同对角化的可逆矩阵s1,s2一定满足s1=s2.2.楼上的方法是错的,错误在于“因为v是正交矩阵,所以

假设A为可逆矩阵,一定能相似对角化吗?

不一定,要A能相似对角化,必须要找到使其对角化的矩阵,这个矩阵式由A的特征向量构成的,Λ=p^-1Ap,而p必须可逆,即对于n阶矩阵要有n个线性无关的特征向量;书上给出的两种可相似化得条件:1,有不相

可对角化矩阵一定可逆吗?

不一定,因为如果A的特征值中有一个或有几个为0时,很显然只要A的特征值的几何重数与代数重数一样的话,那么一定可相似对角化,而对角元素即为对应的特征值,此时A的行列式为0(A的行列式为其所有特征值的乘积

设A可逆矩阵且可对角化,证明A^(-1)也可以对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/

线性代数,A是二次形矩阵,用可逆变换X=PY将其化为标准型,为什么P的求法和相似对角化一样?明明他是转置啊

注意前提二次型是实对称矩阵那么A^T=A^(-1)所以求得过程是一样的再问:二次形矩阵A是对称阵可是P又不是说清楚点好吗不是很理解再答:求P的过程中与求特征向量不同的是最后一步要正交化而求特征向量就没

设A为可逆矩阵,证明:如果A可相似对角化,则A的可逆阵也可以相似对角化

证明:A可相似对角化,则存在可逆矩阵P,使得P^-1*A*P=^=[λi]由于A为可逆矩阵,故λi≠0(否则A的行列式必为0).于是,对等式左右两边求逆,得P^-1*A^-1*P=^(^-1)=[1/