设fn(x)是[0,1]上连续函数,且在[0,1]上一致收敛于f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/29 12:52:20
设fn(x)是[0,1]上连续函数,且在[0,1]上一致收敛于f(x)
设f(x)=–2x+2,记f1(x)=f(x),fn(x)=f[fn-1(x)],n≥2,n∈N,则函数y=fn(x)的

解不动点方程:f(x)=-2x+2=x得:x=2/3因此函数恒过定点(2/3,2/3)

设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|

f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2两式相减,移项,取绝对值得|f'(x)|=|f(1)

设正值函数f(x)在[0,1]上连续,试证:e^(∫(0→1)lnf(x)dx)

e^h(x)替换f(x)要证明的式子会变成e^(∫(0→1)h(x)dx)

微积分 高数 函数序列一致收敛证明 设连续函数序列{fn(x)}在[0,1]上一致收敛,证明{e^fn(x)}在[0,1

fn(x)在[0,1]上一致收敛于f(x),又fn(x)在[0,1]上连续,所以极限函数f(x)在[0,1]上连续所以f(x)在[0,1]上有界,设M为其上界,根据fn(x)的一致收敛:对于ͦ

高数证明题:设函数f(x)在区间[0,1]上连续,证明

作变量替换t=π-x,代入可得原式=∫(π-t)f(sinx)d(-t)(积分限是从π到0),化简一下得∫(从π到0)t*f(sint)dt+π∫(从0到π)f(sint)dt,第一项与原式相差一下负

设函数fx定义域是(0,正无穷)对任意正实数f(mn)=fm+fn,且当x>1时,fx>0,f2=1,(1)求f(1/2

(1)f(1)=f(1×1)=f(1)+f(1),从而f(1)=0又f(1)=f[2×(1/2)]=f(2)+f(1/2)=0从而f(1/2)=-f(2)=-1(2)设00由于f(x2)=f(x1·(

设函数f(x)在区间[0,1]上连续,切0

令g(x)=2x-∫(0,x)f(t)dt-1则g'(x)=2-f(x)>0所以g(x)单调增,最多只有一个实根又g(0)=-10所以在(0,1)有唯一实根.再问:f(t)dt-1=1-∫(0,1)f

设 f(x)=sinx,f1(x)=f'(X),f2(X)=f1'(X).fn+1(X)=fn'(X) n属于N+ 求f

f1(x)=f'(X)=(sinX)'=cosXf2(X)=f1'(X)=(cosX)'=-sinxf3(x)=-cosXf4(x)=sinX循环了f2007(x)=-cosX

设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2]

fn(x)是一个n次复合函数,通过数学归纳法证得fn(x)=2[(2n-3)+(2n-5)x]/[(2n-1)+(2n-3)x]故an=2-1/(2n-1)

设f(x)在[0,1]上有连续导数,f(0)=0,0

令F(x)=(积分(从0到x)f(t)dt)^2-积分(从0到x)f(t)^2dt,00,g(x)严格递增.故g(x)>g(0)=0,于是F'(x)=f(x)*g(x)>0.故F(x)递增,故F(1)

高数题求解.设函数f(x)在0到1上闭区间连续,证明

sin(π-t)=sintx=π-tdx=-dtx=0t=πx=πt=0∫(0~π)xf(sinx)dx=-∫(π~0)[π-t]f(sint)dt=∫(0~π)(π-t)f(sint)dt=∫(0~

{an}是等差数列,设fn(x)=a1x a2x^2 ...anx^n,n是正偶数,且已知fn(1)=n^2,fn(-1

(1)由于fn(1)=a1+a2+a3+...+an=n^2,又fn(-1)=-a1+a2-a3+.+an=n,两式相加,有2*(a2+a4+a6+...an)=n^2+n;两式相减有2*(a1+a3

设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=∫x0f(t)dtx的(  )

limx→0+g(x)=limx→0+∫x0f(t)dtx=limx→0+f(x),limx→0−g(x)=limx→0−∫x0f(t)dtx=limx→0−f(x);由于f(x)在[-1,1]连续,

设f(x)在[0,1]上有连续一阶导数,在(0,1)内二阶可导.

证:因为lim(x→0)f(x)/x=0对上式用洛必达法则有lim(x→0)f`(x)/(x)`=0f`(0)=0又f`(1)=lim(△x→0)[f(1+△x)-f(1)]/△x=lim(△x→0)

已知函数f(x)=x/1+|x|,设f1(x)=f(x),fn+1(x)=f[fn(x)]

用递归定义,f1(x)=f(x),fn+1(x)=f(fn(x)),令n=1得f2(x)=f[f1(x)]=f[(x-√3)/(√3x+1)]=[(x-√3)/(√3x+1)-

一道高数题,证明:设f(x)在[0,1]上连续,且0

令F(x)=f(x)-x;F(0)=f(0)∈[0,1];F(1)=f(1)-1∈[-1,0];即F(0)>=0;F(1)

设F(X0)是关于X的M次多项式,Fn(X)=Fn-1‘(X),n∈N+,Fk(X)为非零常数,则k的值为

因为f(x)为M次多项式,fK(x)为非零常数,所以,根据题意,可得fk(x)即为对f(x)进行M次求导,所以k=M.