求生成子空间的标准正交基

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/08 03:51:20
求生成子空间的标准正交基
设A,B为两个n阶正交矩阵,证明:AB-1的行向量构成n维欧式空间Rn的标准正交基

两个正交矩阵的乘积仍是正交矩阵,正交矩阵的逆仍是正交矩阵.一个n阶矩阵的A行(列)向量可以构成Rn的标准正交基的充要条件是A是正交矩阵.具体的说明,你自己补全下.

线性代数:求A的正交相似标准形.

第一步.计算A的特征多项式f(x)=|xE-A|=(x-1)^2(x-6)^2,从而A的特征值为x_1=1,x_2=6第二步求特征值的线性无关的特征向量特征值1的特征向量满足(E-A)X=0,解方程组

在欧式空间R4中,求三个向量a1,a2,a3所生成的子空间的一个标准正交基

因为a1,a2,a3三个向量都有四个分量,所以每个向量都是4维的,这和我们常见的2维,3维向量是不同的,因为这个,可能你理解上去有点抽象.事实上,我们完全可以用三维欧式空间中的向量来类比.在三维欧式空

大学线性代数,求生成子空间的一个标准正交基

也就是对a1,a2进行单位正交化.结果为b1=a1/√2,b2=(1,1,-1)/√3.b1,b2就是标准正交基

正交变换的证明题证明:A是n维欧式空间V的一个线性变换,若A在任一组标准正交基下矩阵是正交矩阵,那么A是正交变换.

根据定义,要证明是正交变换,只要证明该变换保持内积不变就行了.设a,b是V中的两个向量,a在标准正交基下的坐标是X=[x1,x2,...,xn]'('表示转置)b在标准正交基下的坐标是Y=[y1,y2

设w为线性空间v的一个子空间,证明w的正交补w^⊥是v的一个子空间

设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W

在线性空间R^3中,设α=(1,1,1),β=(1,2,3),由α和β生成子空间W=L(α,β),则W的正交补为____

解:111123r2-r1111012r1-r210-1012基础解系为c=(1,-2,1)^T所以W的正交补为c生成的子空间L(c).

关于高等代数的欧式空间的标准正交基的求法问题

Gram-Schmidtprocess.再问:什么意思啊再答:给定任意组线性无关组,用Gram-Schmidt过程求正交基,再进行标准化.书上肯定有

在线性代数中,已求得标准正交化后的特征向量,如何求标准型?希望能举个例子

标准型的方程的未知数前面的系数就是各个特征值再问:�֪��������ô���׼��再答:��������������������Ժ�����������Q��x��QyȻ��ֱ��д��׼�;��

如何确定一个向量组的生成子空间的基和维数?求R4中由向量组   生成的子空间的一个基和维数.

1.但是我不懂就是由生成的子空间的一个基是如何得出来的?基就是向量组的一个极大无关组向量组α1,α2,α3.α4经初等行变换化成梯矩阵后,非零行的首非零元所在列对应的向量即构成一个极大无关组你的题目中

W1和W2是V的子空间,证明1.(W1+W2)的正交补=W1正交补+W2正交补2.(W1∩W2)的正交补=W1正交补+W

这里暂时用W^表示W的正交补.1.(W1+W2)^=W1^∩W2^.2.(W1∩W2)^=W1^+W2^.1.直接按定义验证.若v∈(W1+W2)^,则v与W1+W2中的向量都正交.特别的v与W1和W

用正交变换求实数中的标准形,并求出所作的正交变换,求正惯性指数.

二次型的矩阵A=11-1120-100|A-λE|=1-λ1-112-λ0-10-λ=-λ^3+3λ^2-2=(1-λ)(λ^2-2λ-2).1是A的特征值,A的另两个特征值是无理数这题计算起来很麻烦

设二维欧式空间V的一组基为α1,α2,其度量矩阵(5,4 / 4,5),求V的标准正交基到α1,α2的过渡矩阵

设V的正交基b1,b2到a1,a2的过渡矩阵为k11k12k21k22则有a1=k11b1+k12b2a2=k21b1+k22b2再由度量矩阵得5=(a1,a1)=k11^2+k12^24=(a1,a

线性代数中的正交子空间与立体几何中的平面垂直的定义有矛盾?

这两个概念确实不完全一致,主要的问题在于立体几何里的定义隐藏了一些东西两个子空间之间有多个经典角比如一个m维子空间和一个n维子空间之间有min{m,n}个经典角两个子空间垂直的意思是说两个子空间之间的

知道n维空间的的r个线性无关向量,怎样求这个n维空间的标准正交基

先将r个向量正交化设(x1,...,xn)与已知的r个向量正交可建立r个方程的齐次线性方程组其基础解系含n-r个向量,正交化之全部单位化即得标准正交基

求线性变换在标准正交基下的矩阵

设e1,e2,...,en是V的标准正交基设y=k1e1+.+knen,则(ei,y)=kiTe1=e1-2(e1,y)y=e1-2k1(k1e1+.+knen)=(1-2k1^2)e1-2k1k2e

A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数

结论是错的,因为A的特征值还可以是零,这不是虚数.正确的讲法是实反对称线性变换(或矩阵)的特征值的实部都是零.证明很容易,若A是实反对称矩阵,那么iA是Hermite阵,iA的特征值都是实数.再问:高

n维欧氏空间的对称变换T在标准正交基下的矩阵B即是正定矩阵又是正交矩阵,证明:T是恒等变换

利用正交矩阵的特征值的模为1,正定矩阵的特征值为大于0的实数得到B的特征值都是1正定矩阵可对角化,有B只能与E相似所以B=ET是恒等变换命题成立