如图所示 长l的轻杆BO

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 17:22:46
如图所示 长l的轻杆BO
3如图所示,倾角为 的光滑斜面上放有两个质量为m的小球A、B,两小球用一根长为L的轻杆相连,下面的小球B离斜面底端的高度

整个过程系统机械能守恒,初始状态,由于两小球静止,故总机械能为两小球各自的重力势能,分别为:mg(h+Lsinθ)和mgh.小球滑到水平面后,由于系统机械能守恒,重力势能转化为动能,故有:机械能守恒定

如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着一个小球A,轻杆靠在一个质量为M、高为h的物块上.若物块与地

一般处理这种问题我们用速度的合成,找到牵连速度,相对速度,绝对速度,他们的关系式:绝对速度=牵连速度+相对速度.你说的题目在《更高更妙的物理》上有原题,是高中物理竞赛涉及的内容.高考不要求掌握.下载地

如图所示,长1米的轻杆BO一端通过光滑铰链铰在竖直墙上,另一端装一轻小光滑滑轮,重力10N的物体通过摆线经滑轮系于墙上A

h2-h1=a点变化的高度  而L2是物体到A点的距离  从图可以看到L2发生了变化 即物体到A的距离发生了变化 所以高度h是两个变化之和再

5[ 标签:] 如图所示,长为L=5米的轻绳,两端分别系在AB和CD两杆的顶

把左半边绳子翻折下来,然后看图.不懂再追问我吧~

1,如图所示,A,B两个带电小球,固定在长为L的轻杆两端,轻杆可以以中点为轴自由旋转,他们的质量分别为2m和m;电量分别

1给你说说原理吧.此题涉及到a电场对电荷的引力的问题,b杠杆原理c圆周运动首先分析可能受力的对象:AB小球,轻杆忽略不计.+q将在电场中受力向下的力F1(具体多大电场力自己算),同时有向下的力F2,故

如图所示,质量均为 m 的两小球 A 和 B 用长为 3L 的轻杆相连,轻杆可 绕距 A 小球 2L 的轴 O 在竖直平

①mgL=1/2m(2v)^2+1/2mv^2v=√(2/5gL)Va=2√(2/5gL)②w=1/2mVa^2-mg2L=-6/5mgL

如图所示,一长为L的轻杆一端固定在光滑铰链上,另一端固定在一质量为m的小球,一水平向右

先求拉力F的大小.根据力矩平衡,F•L/2•sin60•=mgLcos60°,得F=2根号3mg/3再求速度v=ω•L/2再求力与速度的夹角θ=30°,

如图所示,长为L的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直平面内作圆周运动,

首先先说一下题目不严谨的地方,轻杆自始至终都没有对小球的弹力作用,而是绳子.你问的是“为什么当v由0逐渐增大到根号gL时,杆对小球的弹力逐渐减小”,但是在整个过程中,小球在任何时刻的速度都不是0,在最

一道大同杯的题目如图所示,长1米的轻杆BO一端通过光滑铰链铰在竖直墙上,另一端装一轻小光滑滑轮,重力 的物体通过摆线经滑

K,你好像少打了点东西吧?重物质量为10N吧?不过都是做了三年难题了,对这一点猜都猜得出了.让斌哥用老杨讲物理的标准思路给你详细解答.(可惜弄不了示意图,饶恕我吧)首先OA水平时的情况,对绳子上O点进

如图所示,重力为G的物体挂在水平横杆的右端C点.水平横杆左端有一可转动的固定轴A,轻杆AC长为L.轻绳的B端可固定在AC

平衡时杆受关于A点的总力矩为0.总力矩是重物产生的力矩与绳BD拉力的力矩之和,因为前者保持不变,所以后者也保持不变.绳BD拉力的力矩等于BD上的拉力乘以A点到BD的距离.力矩不变,要使BD拉力最小,就

如图所示,A、B两个物体质量均为m,由轻杆相连并可绕光滑水平轴O自由转动,AO=L,BO=2L,使杆由水平位置静止释放,

对A、B两球组成的系统应用机械能守恒定律得:mg2L-mgL=12mvA2+12mvB2…①因A、B两球用轻杆相连,故两球转动的角速度相等,即:vAL=vB2L…②设B球运动到最低点时细杆对小球的拉力

如图所示,长为L的绝缘轻杆两端分别固定带电小球A和B,轻杆处于水平向右的匀强电场中,不考虑两球之间的相互作用,初始时轻杆

A、因为A、B两球电势能之和不变,则电场力对系统做功为零,因此A、B电性一定相反,A可能带正电,也可能带负电,故A错误;B、A球的电性不确定,无法判断其电势能的变化,故B错误;B、电场力对A、B做功大

如图所示,用长为L的轻绳悬挂一个质量为m的小球,对小球施加一个力

最小力Fn的方向一定垂直于绳子.大小为Fn=mhsinbA正确.

如图所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A、B,两小球用一根长L的轻杆相连,下面的B球离斜面底端的高度为h

(1)以A、B组成的系统为研究对象,系统机械能守恒,由机械能守恒定律得:mgh+mg(h+Lsinθ)=12×2mv2,解得两球的速度:v=2gh+gLsinθ.(2)以A球为研究对象,由动能定理得:

如图所示,倾角为θ的光滑斜面上放有两个质量均为m的小球A和B,两球之间用一根长为L的轻杆相连,下面的小球B离斜面底端的高

(1)以A、B组成的系统为研究对象,系统机械能守恒,由机械能守恒定律得:mgh+mg(h+Lsinθ)=12×2mv2,解得,两球的速度:v=2gh+gLsinθ.(2)以A球为研究对象,由动能定理得

如图所示,一长为L的轻杆,其A端与B端分别固定一个质量为m的小球,杆可绕离A端L/4处的水平轴O无摩擦转动,开始时,将杆

系统机械能守恒:取B在最低点时的位置重力势能为零,则有2mg*(3/4)L=mgL+mvA^2/2+mvB^2/23VA=VB代入上式得:VA^2=gL/10对A使用动能定理:WG+W杆=mvA^2/

如图所示,一根长为L的轻杆OA,O端用铰链固定,另一端固定着小球A,轻杆靠在一个高为h的物块上.若物块与地面摩擦不计,则

根据运动的合成与分解可知,接触点B的实际运动为合运动,可将B点运动的速度vB=v沿垂直于杆和沿杆的方向分解成v2和v1,其中v2=vBsinθ=vsinθ,为B点做圆周运动的线速度,v1=vBcosθ

如图所示,一长为L的轻杆一端固定在光滑铰链上,另一端固定一质量为m的小球.一水平向右的拉力作用于杆的中点,使杆以角速度ω

解题思路:根据动能定理或能量守恒定律都行。外力F做功全部用来克服重力做功。解题过程:最终答案:1/2mgwl

如图所示,A、B为竖直墙面上等高的两点,AO、BO为长度相等的两根轻绳,CO为一根轻杆,转轴C在A

其实你和你老师的说法是一致的:物体处于平衡状态,必然TOA和TOB的合力沿OD方向,又因为D是AB的中点,OA=OB,根据力的三角形合成法则,TOA=TOB.