在正方形ABCD中,AP=12,点A和点P是以EF为轴的对称点,则EF=

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/11 17:40:02
在正方形ABCD中,AP=12,点A和点P是以EF为轴的对称点,则EF=
在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点, 求证:DF⊥AP;

图画好.取AP中点为M连FM和dm.三角形PDA为等腰直角DM三线合一,所以DM⊥PA三角形pab为直角三角形mf平行AB所以MF⊥PA.所以PA⊥面dmf所以证好了.手机打的所以有点乱,看不懂给我留

如图,在正方形ABCD中,P为BD上一点,PE⊥DC于E,PF⊥BC于F,试说明AP=EF

连结CP在正方形ABCD中,BD是对角线∴AB=BC,∠ABP=∠CBP=45°,∠C=90°∵BP=BP∴⊿ABP≌⊿CBP(SAS)∴AP=CP∵PE⊥DC于E,PF⊥BC于F∴∠C=∠PFC=∠

在正方形abcd中,e,f分别是ab,bc边的中点.ce,df交与于点p,求证ap=ad

延长CE,交DA的延长线于G∵E是AB的中点,AD//BC∴AG = BC∵BC  = AD∴A是GD的中点∵E是AB的中点,F是BC的中点∴EB&n

如图,已知正方形ABCD中,Q在CD上,且DQ=QC,P在BC上,且AP=CD+CP,求证:AQ平分角DAP.

证明:连接PQ,并延长交AD延长线于点M因为AD//BC所以∠M=∠QPC因为QC=QD,∠PQC=∠MQD所以△CPQ全等于△DMQ(角角边)所以QP=MQ,CP=DM因为AP=PC+CD,而CD=

如图,在正方形ABCD中,延长DA到P,使AP=EC,

∵∴⊥‖‖⊿△∽≌→∠°∟⌒⊙⊕ ½ ‰º¹²³^2√SAS → 

如图,在正方形ABCD中,AB=2,P是BC边上与B、C不重合的任意一点,DQ⊥AP于点Q

(1)∵四边形ABCD是正方形,∴AD∥BC,∠B=90°,∴∠DAP=∠APB,∵DQ⊥AP,∴∠AQD=90°,∴∠B=∠AQD,∴△DAQ∽△APB;(2)∵△DAQ∽△APB,∴DQAB=DA

在正方体ABCD-A1B1C1D1中,AP=B1Q,N是PQ的中点,M是正方形ABB1A1的中心.求证:

证明:(1)如图,连结PM并延长交A1B1于G,连结GQ,因为N是PQ的中点,M是正方形ABB1A1的中心,所以MN∥GQ,因为GQ⊂面B1D1,MN⊄面B1D1,所以MN∥平面B1D1;(2)因为M

已知 如图,在正方形ABCD中,P是CD上一点,DE⊥AP,垂足分别为E、F.求证:AE=DF

因为ABCD为正方形,所以AB=AD,∠BAD=∠BAE+FAD=90度.因为DE⊥AP,垂足分别为E、F,所以∠AFD=AEB=90度,所以∠FDA+∠FAD=90度.所以∠ADF=∠BAE.因为∠

在正方形ABCD中,P是射线CB上一点,连接AP

1,bp方=ab*bf再问:再答:AB/BP=(AB-BP)/CE整理上式得BP方=AB*(BP-CE)综上,BF=BP-CE再问:再答:2,CE=BP+BF方法与一相同

在正方形ABCD中,E,F分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积.

/>由ABCD是正方形可知AB=BC=CD=AD取BC中点H,连接AH,交BE于点N,则AF=CH=AD又由ABCD是正方形可知AF∥CH,所以AFCH是平行四边形,所以AH∥CF,因为BH=HC,所

点P在正方形ABCD内,AP=1,BP=2,CP=3,求正方形ABCD的面积

设正方形ABCD的边长为a建立直角坐标,A(0,0)B(0,a)C(a,a)D(a,0)设P坐标(x,y)PA²=x²+y²=1PB²=x²+(y-a

如图,在四棱锥P_ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,F是PB的中点.求证:DF⊥AP

令PA的中点为E.∵PD⊥平面ABCD,∴AB⊥PD.∵ABCD是正方形,∴AB⊥AD.由AB⊥PD、AB⊥AD、PD∩AD=D,得:AB⊥平面PAD,∴AB⊥PA,又F∈PB且PF=BF,∴PF=A

如图,在正方形ABCD中,P是CD上的一点,BE⊥AP与E,DF⊥AP与F,说明AE=DF的理由

∵ABCD为正方形【特殊平行四边形】CD∥AB∴∠DPF=∠PAB∴∠D=90°AD=AB∵BE⊥APDF⊥AP∴∠DFP=∠AEB=90°∴∠DEP-∠DPE=∠AEB-∠PAB即∠CDF=∠ABE

如图,在正方形ABCD中,P是BC上的一点,BE⊥AP于E,DF⊥AP于F,说明AE=DF

正方形ABCD中,因为AD⊥AB,所以角DAP+角BAP=90度,AD=AB;又因为DF⊥AP,所以三角形DAF是直角三角形,且角DAF+角ADF=90度;同理,BE⊥AP,所以三角形BAE是直角三角

已知如图,正方形ABCD中,AP=AB+CP,AF是

作FE垂直AP于E,连接PF.因为角BAF=角PAF,角B=角AEF=90度,AF=AF,所以,三角形ABF全等三角形AEF,所以,AB=AE,BF=EF.因为AP=AB+CP,所以,EP=CP;又P

如图,在正方形ABCD中,Q是CD的中点,P在BC上,且AP=PC+CD,求证:AQ平分∠DAP.

证明:如图,延长AQ交BC的延长线于E,∵四边形ABCD是正方形,∴AD=CD,AD∥BE;∵Q是CD的中点,∴△ADQ与△ECQ关于点Q成中心对称,∴AD=CE,∠1=∠E;∵AP=PC+CD,∴A

在正方形abcd中,e是cd的中点,f是da的中点,be与cf相交于p,求证:ap=ab.

证明:如图,延长AB、CF相交于点Q∵BC=CD,∠BCe=∠CDF=90°,CE=DF=1/2BC∴△BCE≌△CDF∴∠BEC=∠CFD∵∠FCD+∠CFD=90°∴∠FCD+∠BEC=90°∴B

在正方形ABCD中,EF分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积

图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=

在正方形ABCD中,E,F是CD,DA中点,BE,CF交于P,求证AB=AP

证明:AB、CP都延长交于点Q,则可轻而易举地证得角QPB是直角,点A是BQ的中点.在任何直角三角形中,斜边的中点到三个角的距离都相等.即有AQ=AB=AP.