图中滑块和小球的质量均为 ,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/20 14:58:25
图中滑块和小球的质量均为 ,滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块
带有光滑的半径为R的1/4圆弧轨道的滑块静止在光滑的水平面上,此滑块的质量为M,一个质量为m的小球由静止从最上端释放,当

假设M和m在小球从滑块底端水平飞出时速度大小是V和v,MV=mv(动量守衡)又小球在释放前对水平面上的势能是mgRmgR=MV^2/2+mv^2/2(能量守衡)V=√(2m^2gR/[M(M+m)])

如图所示,质量为M的滑块可以在光滑水平导轨上无摩擦滑动,长为l的轻绳一端系于滑块M上,另一端系一质量为m的小球.今将轻绳

设当轻绳与水平导轨夹角为θ时,M的水平速度大小为V,m的水平速度大小为Vx,竖直速度大小为Vy,水平方向动量守恒:M*V=m*Vx系统机械能守恒:mglsinθ=0.5MV^2+0.5mVx^2+0.

动量 质量为M的楔形物块上有圆形轨道,小球m以速度v向物块运动,求小球终的速度和高度H

能量守恒此过程是动能转化为重力势能及两物的动能由于圆弧小于90度且足够长,到达最高点速度时两物有共同的水平速度此时有动量守恒,设最高点时整体速度为Vmv=(M+m)VV=mv/(M+m)再根据能量守恒

如图所示,倾角为θ的光滑固定的斜面上有一质量为m的滑块正在加速下滑.滑块上悬挂的小球达到稳定(与滑块相对静止)后悬线的方

B.其运动相当于直接在斜面上下滑.稳定时其加速度和滑块相同,大小为gsinθ,方向沿斜面向下.其合力由重力和悬线的拉力合成,所以悬线的方向是垂直于斜面.再问:整体研究得加速度a=gsinθ,如何理解小

质量为M的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一个质量为m的小球以速度V0(0是下标)向滑块滚来,

连弧面高度都没说如果小球到达最高点时还没有超过弧面的话应该是二者速度一样V=mVo/(M+m)如果超过了弧面到了滑块上面必然要告诉弧面高度

高一物理动能题.滑块和小球的质量都为m,滑块可在水平放置的光滑固定导轨上自由滑动.小球与滑块上的悬点O由一不可伸长的轻绳

滑块静止后,小球摆动是机械能守恒过程,因此小球在最低点的速度v满足:0.5mv²=mgl*cos60,得到:v²=gl再考虑从释放小球到小球第一次到达最低点的过程,重力对小球做正功

牛顿第三定律.在倾角为α的斜面上.放一个质量为M的带支架的滑块,支架上悬挂质量为m的小球.滑块与斜面间的动摩擦因数为μ.

当滑块与小球相对静止时,小球与滑块做加速度相同的匀加速运动,设加速度为a,方向沿斜面向下对整体进行分析(M+n)a=(M+n)gsina-NμN=(M+n)gcosa解得a=g(sina-μcosa)

如图所示,一固定杆与水平方向夹角为θ,将一质量为m1的滑块套在杆上,通过轻绳悬挂一个质量为m2的小球,杆与滑块之间的动摩

把环和球看做一个整体受力分析,沿斜面和垂直斜面建立直角坐标系得,若速度方向向下,则沿斜面方向:(m1+m2)gsinθ-f=(m1+m2)a 垂直斜面方向:FN=(m1+m2)gcosθ摩擦

如图所示,甲、乙两个带电小球的质量均为m,所带电量分别为+q和-q,两小球用绝缘细线连接

A首先将甲乙两球看成整体,+q-q受力大小相等,方向相反故受合力为0,上方绳子垂直于地面再分析乙球乙受力向右,故绳子向右偏如果整体分析不能理解可以先分析乙,绳2对甲水平方向的力向右,与乙受电场力大小相

质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与桌面相切.一个质量为m的小球以速度V0向着滑块滚来.设小球不能越

m在M弧面上升过程中,当m的竖直分速度为零时它升至最高点,此时二者只具有相同的水平速度(设为v),根据动量守恒定律有:mV0=(M+m)v…①整个过程中机械能没有损失,设上升的最大高度是h,根据系统机

质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部6与桌面相切.一个质量为m的小球以速度V0

好几年没碰物理了,不知道对不对.由于动量守恒,那么Vmax=m/(m+M)V0,两者相撞过程中,因为有力相互作用,滑块加速,小球减速,直至两者速度相同,此时,两个物体不再受力,速度恒定,一起向最初运动

光滑水平面上有带有四分之一光滑,半径为R的圆弧轨道的滑块,质量为M,一质量为m的小球以Vo的速度沿平面滑上轨道,并从轨道

当物体到达圆弧的最高处正要离开时设速度为V:由能量守恒有1/2m(Vo)^2=1/2m(V)^2+mgR可以求出速度V然后物体以速度V从轨道最高处上升由公式2gh=V^2可以求出hh表示物体离开圆弧轨

倾斜角为θ,足够长的光滑斜面上放置一个质量没m的滑块,滑块上固定一直角杆,杆上用细线悬挂一小球,不计空气阻力,当滑块与小

BDB.斜面光滑的时候稳定状态就是整体加速下滑,加速度为mgsinθ,方向沿斜面向下,小球的加速度也是这个值,用牛二分析之,得B正确.D.斜面粗糙,且μ=tanθ,可以证明整体匀速下滑(斜面上物体运动

一细线的一端固定于倾角为45o的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球,当滑块至少以加速度a=____

把细线对小球拉力分解为与垂直方向的二,垂直方向的力与重力相等时小球对滑块的压力等于零,利用此条件,得水平力mga=g

如图所示,细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球,当滑块至少以加速度a=

(1)对物体进行受力分析,如图所示:由图知,F合=mg故a=g(2)由上图得,当a=2g时,F合=ma=2mg由勾股定理得:F=(mg)2+F2合=5mg答案为:g、5mg

如图所示,细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球.当细线对小球的拉力刚好

小球受重力和支持力两个力,如图所示,根据牛顿第二定律,知小球的加速度a=F合m=mgm=g.知水平向右的加速度a的大小为g.故A正确,B、C、D错误.故选A.

高二动量守恒题质量为M的滑块静止在光滑水平面上 ,滑块的光滑弧面为1/4圆弧,一质量为m的小球以速度v0向滑块滚来,设小

到最高点时小球和滑块速度相等:mv0=(M+m)v∴v=mv0/(M+m)①全程无机械能损失:1/2mv0^2=1/2(M+m)v^2+mgR②解①②得R=Mmv0^2/[2(M+m)]

质量为M的滑块,倾角α=60°,斜边长L,滑块置于光滑水平面上,斜面顶端有一质量为m的光滑小球,静止开始,自由下滑,求小

不知道一楼到底能不能解出这道题,反正思路是典型的大学物理解题思路,用微积分的方法分析看似高深,实际上繁琐而未必有效,尤其相对于本题考查的知识点来说相差千里.楼主已经明确说明这是一道考查惯性力的题目,实

一个质量为M,底边长为b的三角形劈块静止,有一个质量为m的小球由斜面顶端无初速度滑到底部时劈块移动的距离S2.是求劈块移

如果没有摩擦的话就是一道动量守恒问题哒(等边三角形么还是直角三角形,我是以等边三角形来算的).方法一:由动量守恒得,S1*m=S2*MS1+S2=b/2马上可得:S2=bm/2(M+m)方法二:因为整