全体对称矩阵构成的子空间的基

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/29 09:44:34
全体对称矩阵构成的子空间的基
全体3阶实对称阵在矩阵的加法和数乘下构成的线性空间的维数为?为什么答案是6?

表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的

matlab中矩阵A,子矩阵B,如何求得剩余构成矩阵C的问题

首先要确定剩下的能构成矩阵,找出B在A中的行/列范围,然后,令其为空,就可以得到C再问:理论原理已推导完成,需要编程代码再答:A中,有个元素不重复的列么?再问:矩阵为UCI中的数据,不能确定。对代码比

如何证明全体上三角矩阵,对于矩阵的加法与标量乘法在实数域是线性空间

V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

一道线性代数中关于线性空间的题:设W是P(n*n)的全体由AB-BA的矩阵所生成的子空间,证明dimW=n^2-1

这个问题分两步走.1你首先得说明W={X|X=AB-BA}是线性空间2W的维数为n^2-1其实呢,只要当你说明1后,2自然也就解决了说明1,你需要一个定理定理:方阵C能分解成AB-BA的形式,充分必要

实数域R上全体二阶矩阵构成的线性空间的维数,并写出一组基?

很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

2阶实反对称矩阵的全体关于矩阵的加法和数乘构成几维的线性空间?

2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.

在线性空间Pn乘以n中,A是一个取定的n阶方阵.证明所有与A乘法互换的矩阵全体W是P的一个子空间

设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间

平行四边形全体构成的集合

两对比相等的全体四边形的集合

实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法是否构成R上的线性空间,如果是,求它的维数和基

3阶与2阶不能加.所以得是同阶.n阶实对称矩阵的集合,对于矩阵的加法和实数与矩阵的乘法构成R上的线性空间,(验证简单,自己完成).维数是1+2+……+n=n(n+1)/2.基可以用{Eij}1≤i≤j

n维欧氏空间的对称变换T在标准正交基下的矩阵B即是正定矩阵又是正交矩阵,证明:T是恒等变换

利用正交矩阵的特征值的模为1,正定矩阵的特征值为大于0的实数得到B的特征值都是1正定矩阵可对角化,有B只能与E相似所以B=ET是恒等变换命题成立

高等代数 向量空间由3阶对称矩阵构成的子空间的维数是( );(A)9 (B) 6 (C)2 (D)3

这个题选B,三阶矩阵可以设为(aij)3*3,总共有aij=aji三个等式,有9个未知数,3个等式,那么解空间的维度就是6

n阶实反对称矩阵的全体按通常的矩阵加法和数乘运算构成一线性空间,其维数等于____,其一组基为______?

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

求维数:线性空间Pn中,满足a1+2a2+3a3+...+nan=0的全体向量(a1,a2,...an)构成的子空间的维

解题中用到了一个重要结论:你有问题也可以在这里向我提问: